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In  this paper, the first of two parts on solutions to the non-relativistic de Hoff- 
mann-Teller relations, a unified notation is developed and used to produce new 
analytical solutions for one-dimensional unsteady and two-dimensional crossed- 
fields representations. A simple numerical solution method for the non-aligned 
two-dimensional representation is also included. These solutions are explicit in 
the upstream parameters and a single strength parameter. Unification of reality, 
entropy and evolutionary conditions is also carried out. The resulting single 
criterion is used to derive algorithms by which the correct solution is obtained, 
in every case without previous computation and elimination of non-physical 
solutions. Classifications of the solutions are discussed in relation to previous 
schemes. 

1. Introduction 
This paper examines the problem of obtaining solutions for the state down- 

stream from a prescribed magnetogasdynamic shock. In  this approach, the 
geometric properties of the shock are exploited to connect the one-dimensional 
unsteady, the non-aligned two-dimensional steady and the aligned-fields repre- 
sentations, without resorting to formal Galilean transformation ( 3  2). This 
approach not only allows discussion of all cases from a single point of view, but 
suggests adoption of a unified notation, in which those variables which are 
Galilean invariants are used to write solutions in all representations. 

A solution here will refer to an explicit analytical function giving the down- 
stream state in terms of the fixed parameters of the upstream state and a single 
strength parameter. Such a form of solution allows exhaustive classification of the 
possible types of shock, thereby allowing a possibility for overall comprehension 
of shock behaviour. It also provides a basis for the efficient organization of the 
inevitable numerical evaluations of the solutions in practical use. The emphasis 
on the use of a single strength parameter follows from the difficulty in realizing 
the above-listed benefits if two or more are used (see discussion in Bertram 1973). 
In  fact, even a numerical study formulated so that only a single strength para- 
meter appears, as in the non-aligned two-dimensional studies of Lynn (1966) and 
of Morioka & Spreiter (1969), can give much information by indirect means and 
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may prove more useful than an analytical formulation with multiple strength 
parameters. 

The only solutions of a general nature conforming to the above definition are 
those of Bazer & Ericson (1959) for the one-dimensional unsteady representation 
and the author’s (Bertram 1973) for the aligned-fields case. Further examples 
are derived in $ 3, where an explicit solution is given for the crossed-fields case. 
Also given is a new single-valued form of the one-dimensional unsteady solution, 
with the downstream value of the ratio of normal relative velocity to the normal 
Alfvdnwave speedappearing as the strength parameter. Besidesbeing convenient, 
this latter solution suggests and allows proof of a pair of theorems on the relation 
of reality, entropy and evolutionary conditions in $ 4. These three criteria are 
then unified, in the sense that a single criterion equivalent to all three is presented. 
In the interest of brevity, detailed proofs have been omitted, except for these 
two central theorems. 

For the two-dimensional steady representation of the shock, no analytical 
solution was found, except in the aligned- and crossed-fields limits. However, 
because of the simplicity of the unified reality-entropy-evolutionary condition, 
even this case can be included in the discussion in $ 5 ,  where explicit bounds 
are given on the strength parameter in all representations. When a value of the 
strength parameter is chosen within the given bounds, the resulting solution is 
guaranteed to be real-valued, compressive and evolutionary. The only com- 
plication for the numerically solved two-dimensional case is that a specific 
algorithm must also be given to obtain the correct root from the polynomial 
connecting the downstream state and strength parameter. These bounds, like 
those of Bazer & Ericson (1959) and Ericson & Bazer (1960), are written in terms 
of the upstream parameters only, and do not contain the strength parameter. 

Finally, in $6, the problem of classification of solutions, considered by all 
earlier authors, notably de Hoffmann & Teller (1950), Friedrichs (1954), Fried- 
richs & Kranzer (1958) and Bazer & Ericson (1959), is reconsidered from the 
present point of view. The resulting system is essentially that of Bazer & Ericson 
(1959), but is restricted to the classification of individual shock properties, with 
shock polar classification deferred to part 2 of this study. Hopefully, this simpler 
system enhances the clarity of the earlier schemes. 

2. Nomenclature and geometry 
Consider a region filled with a perfectly conducting, electrically neutral, in- 

viscid, perfect gas with gas constant R, constant specific heat ratio y, such that 
1 < y < 2,  and constant magnetic permeability p. The gas has mass density p$, 
absolute pressure and temperature p$ and T$, and specific entropy S$. It moves 
at a non-relativistic velocity U$ through a magnetic field with induction vector 
B,f . Let a plane shock surface, moving a t  non-relativistic velocity U+, penetrate 
the region. Select Cartesian co-ordinate directions with unit vector n normal 
to the shock pointing downstream in the -U+ direction, unit vector k in the 
z direction, upwards out of the plane containing U+ and B,f, and unit vector 
t = k x n tangential to the shock surface (figure 1). The superscript + indicates 
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U, shockspeed 

Downstream 

i-4 K T, 6: 

FIGURE 1. Shock geometry in the plane of U and B,. +, upstream vector; --+, downstream 
vector ; a, [u] = u - uo ; =, shock surface. 

a dimensional variable in rationalized mks units, while the subscript zero or no 
subscript denotes upstream and downstream values, respectively, of the variable. 

The discontinuities of the variables through the shock must satisfy (de Hoff- 
mann & Teller 1950) 

up+vin = 0, (2.1) 

(2.2) 

(2.3) 

I ~+~ ;  u; +p+ + ( ~ t f 2  - ~ 3 / 2 , 4  = 0, 

up+v;t utf - B; BtflPn = 0, 

wn = 0, (2.3a) 

= 0, (2.4) 3 B+2 (u+ . B+) B,f + u;t (P+ + %) - 
P 

P+ = p+RT+ = p$(p+/p$)Yexp [ (y - 1) (S+ - 8$)/R], (2 .5 )  
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w,+i = 0, (2.6) 

[E+' - Ek'n] = [B+ x v+ - u,'B,+ n] = 0, (2.7) 

[Et ']  = [B$ x ZQ k] = e,f'/e (2.8) 

and [In x B+] = pj:, (2.9) 

where [XI = X - X ,  and v = u+- U+ is the gas velocity relative to the shock; 
j,+ is the current density per unit length of shock. The electrostatic charge density 
per unit area of the shock e,f' appears divided by the constant permittivity of the 
gas E ,  so e,f'/e is of the order of the electric field vector E+' discontinuity; the 
prime indicates that these variables are seen from co-ordinaks moving with 
the shock, as is v. 

Dimensionless variables are introduced by 

ji = p+/p$, p = p+/p$, F = T+/T$, [IS] = (S+-S$)/R, 

B = B+/B$ and so = a$2/bof2, 

where b$ = BO+/(pp$)* is the upstream Alfvhn speed and ut2  = (ypO+/p$)* is the 
upstream acoustic speed. All velocity vectors are made dimensionless by division 
by b$. Since B can undergo only tangential jumps according to (2.6), it is also 
useful to introduce h = [IB] = (Bt-B&)/B$. In  terms of these variables, the 
problem is to solve (2.1)-(2.9) for h, [u], i j ,  13, and US] as functions of the up- 
stream variables y, s,, B,, u, and some strength parameter, U or its equivalent. 
Before such a solution is written down, some general observations are made. 

Becausethe deHoffmann-teller shockequations (2.1)-(2.9)arenon-relativistic, 
they are, by definition, Galilean invariant. In  particular, an arbitrary Galilean 
transformation leaves the scalars y ,  so, ji, p ,  and is], the vectors B, h, j, and 
[u], and the geometric quantities won and p unchanged; the angle p is measured 
positive counterclockwise from B, to t. Both the velocity u of the one-dimensional 
unsteady (henceforth one-dimensional) representation and velocity v, with its 
associated angle $, measured counterclockwise from v, to B, of the non-aligned 
two-dimensional steady (henceforth two-dimensional) representation, change 
both in magnitude and inclination. Thus, it is to be expected that a solution 
written in terms of the invariants listed above will prove useful, regardless of 
the co-ordinate system from which the shock is viewed, while a solution explicit 
in velocities cannot. 

The variables E' = E+'/b$ B$, j, = pj$/B,+, e: = e,"/ebof B,+ and u, are all 
secondary variables, in the sense that they do not appear in (2.1)-(2.7) after us 
has been dropped from (2.4) and (2.7) by use of (2.1) and (2.3~). Thus (2.1)-(2.7) 
suffice to determine the seven unknowns u,, ut, B,, B,, p ,  j3 and in terms of the 
upstream parameters and the strength parameter, and further, these seven un- 
knowns satisfy the same equations regardless of the value of u,. Therefore, all 
Galilean transformations in the z direction are seen to be trivial, in that they 
modify only the values of the secondary variables e:, Ek, El and us. This conclusion 
allows us to discuss the solution considering only velocity components in the 
n, t plane, that is, to replace u and v by fi = u -u,k and 8 = v- w,k = v-usk, 
etc., as is well known. It also allows us to generalize slightly the aligned-fields 
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label, since it is necessary only that the in-plane velocity and induction vectors 
are parallel upstream for the full simplification associated with the aligned-fields 
representation to be exploited as is done below. 

Now, of the infinite number of one- and two-dimensional representations 
available for the same shock, there are two which are physically distinguished 
from all others by the condition E,  = 0;  the ‘one-dimensional’ co-ordinates 
which move with the gas in the plane so that v,, = U and u, = 0, and the ‘two- 
dimensional ’ aligned-fields co-ordinates in which the upstream gas velocity is 
4, = v,,(n + (cot/?) t) = (v,,,/sinp) i, the co-ordinates (z, y) being, respectively, 
parallel and normal to B, in the plane. 

These two representations also share the property that (2.1)-(2.7) contain 
only invariant terms in these co-ordinates. Therefore, it is to be expected that 
solutions written in terms of these variables will play a central role in any dis- 
cussion of the shock. This invariance is clear for the one-dimensional system with 
u, = 0 since [u] = u is true in that case. For the aligned-fields representation, 
note that the solution will be written in terms of y, so, A,, p and /?, all of which 
have already been shown to be invariant except possibly A,, the component of 
q, along B,. But, because qon = von defines a,, we have 

A,  = vo,/sinp = I Q ,  (2.10) 

which must be invariant since it is the ratio of invariants. The notation A ,  has 
been used because A2, = @$2/b$2, the upstream Alfvbn number squared of the 
aligned-fields representation, and A; = ( ~ $ , / b & ) ~ ,  the one-dimensional Alfvkn 
number based on normal speeds. The subscript 1 is used to emphasize that A,  
is a strength parameter equivalent to U or won for the one- or two-dimensional 
formulations. The sign of A ,  is positive or negative, respectively, for 6, parallel 
or anti-parallel to B,; this means that A ,  is not simply the Alfvdn number. 

Part of the role played by the aligned-fields representation may be seen by 
combining (2.1), ( 2 4 ,  (2.7) and (2.10) to obtain 

= AiBo, 7% = A,B; (2.11) 

that is, the alignment of mass flux and induction vectors survives the shock with 
the same constant of proportionality A ,  (de Hoffmann & Teller 1950). This rela- 
tion can be given the following simple and useful geometric interpretation. For 
a prescribed upstream state and strength parameter, [[u] is determined from 
(2.1)-(2.7). Owing to its Galilean invariance, [u] = [v] = [q], and thus P6 of 
figure 1 is known when [u] is known. Because of (2.11), B lies along OP,, and (2.6) 
requires its tip to lie on the line through the tip of B,, parallel to t. The inter- 
section of these two lines a t  P5 must then be the tip of B downstream of the 
shock, Also, figure 1 displays the geometric interpretation of (2.1). Extension 
of the vectors v and q until they intersect the shock surface at P4 and P, produces 
the downstream mass flux vectors. Because of the dimensionless variables used 
here, upstream mass flux and velocity vectors are identical. The analytical form 
of this relation follows from (2.11) as 

(2.1 1 a) h = UPp9li/Al. 
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Thus, h, [pq] and [u] are all related geometrically and analytically via the 
aligned-fields representation. 

In summary, figure 1 displays the geometry of a single shock viewed from three 
different co-ordinate systems : first, an arbitrary one-dimensional system in which 
the gas has upstream velocity u,; second, an equally arbitrary two-dimensional 
system with upstream gas velocity v,; and finally, the unique and invariant 
aligned-fields co-ordinates. These representations all share values of the above- 
listed invariants, and are geometrically related through (2.10) and (2.1 1). This 
unity of notation and geometry allows the construction of shock solutions for 
all three cases from a single viewpoint, and connects them without inconvenient 
formal Galilean transformations. 

3. Solutions 
The precise task undertaken in this paper is to write solutions in a convenient 

form which enables us to construct the locus of all possible downstream states 
which can be reached from a fixed upstream state. Fixed means that all the 
upstream parameters as seen from the arbitrarily chosen co-ordinate system are 
held constant while a single strength parameter is varied. For any system, y, so 
and B, = i are all held constant; in addition, for an arbitrary one-dimensional 
system /3 and u, are constant while a strength parameter equivalent t.0 q,, varies; 
for arbitrary two-dimensional co-ordinates, $, and A ,  = lvol are constant while 
a strength parameter equivalent to /3 varies; and finally, for the aligned-fields 
case, A, and yk, = 0 are constant and the strength parameter varies. 

For the aligned-fields case, this task has been completed (Bertram 1973) by 
employing jj, another invariant, as a strength parameter. The closed-form 
solution is 

and ( 3 . 1 ~ )  

where MT2 = = (y+  1)Ai/[2s0+ (y -  l ) A ! ]  is the square of the Mach 
number based on the critical acoustic velocity a: of the upstream flow and 
JITz < (y + l)/(y - 1) is always true. Since the remaining downstream variables 
are easily determined in this or any other representation once the first two have 
been written down, we need only consider these two relations in their various 
forms. 

Now, for the one-dimensional solution, we wish to treat /3 as a known constant 
and solve for p or A2, in terms of the other. Equivalently, we may introduce the 
downstream Alfv6n number squared 

< = At/jii = vi/bi  = vtz/(b$ztn2p) (3.2) 

as a strength parameter and 
q = p - 1  (3.2a) 
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as an unknown, and then solve (3.1) to obtain 
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(3.3) 

From (2.3) and (2.11) it is found that 

UPqI = Alh = PUqtIi+.qot = Ph/4+vIO€ + A,h/C;+.q,t, 
where q,, = A,cospt, so that 

which, together with (3.3), is the desired one-dimensional solution. It is equivalent 
to the earlier solution of Bazer & Ericson (1959), but proves much more con- 
venient to  use. A comment on notation is also in order; h = h . t here corresponds 
t o  Bazer & Ericson's h, or their - hs, while ,8 here is the same asp  for a fast shock 
or / 3 - ~  for a slow shock in the earlier aligned-fields study (Bertram 1973). This 
use of /3 and h, and also of the signed A ,  in (2.10) is necessary to obtain simple 
forms of solution such as (3.3), so that they apply to both fast and slow shocks. 
These latter are distinguished from one another simply by h > 0 and h < 0, 
respectively, for compressive shocks, according to ( 3 . 3 ~ )  and the definitions of 
fast and slow shocks in $4. 

When an arbitrary two-dimensional co-ordinate system is used, two quantities 
which are not Galilean invariants must be held constant, namely the magnitude 
A,  and inclination $,, of Go. Because the aligned-fields and two-dimensional 
representations have the same normal component of velocity 

A,  = A ,  sin (/3 + @,)/sinp. (3.4) 

Thus, specification of /3 or A ,  as a strength parameter determines both values in 
(3. I ) ,  leaving the task of solving a cubic for p (or a sixth-degree polynomial for 
A ,  or tanp; see Lynn's (1966) equation (Sa ) ;  his p = p+@, in our notation). 
This difficulty has appeared for every choice of dependent variable and parameter 
examined. The final relation is always cubic in the unknown, preventing a 
closed-form solution for this case. 

It can be noted that this same result has been obtained in all previous non- 
aligned two-dimensional studies. The Germain-Shercliff (Germain 1959 ; Shercliff 
1960) generalization of the Rayleigh and Fanno processes, as extended by Morioka 
& Spreiter (1969), yields three possible downstream states for each specified 
upstream state. Lynn's (1966) equations for velocity turning angle or p, with 
coefficient functions of p, are cubic; so is the equation for the combination-of- 
angles parameters employed by Morioka & Spreiter. It might be conjectured that 
the basic difficulty in all these formulations is the use of A ,  and $,, which lack 
Galilean invariance, as constant parameters (they are implicit in the Rayleigh 
process analysis, of course). Further, since this cannot be avoided, some cubic 
will always have to be solved. Despite this difficulty, a great deal can be learned 
by indirect analytical means, and particular solutions can be obtained, as in 
the past, by solving (3.1) numerically; this is the approach taken in part 2 of 
this study. 
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Despite the cubic governing equation for the general non-aligned two- 
dimensional case, there are two special values of +,, namely $, = 0 (aligned 
fields) and +, = 3. (crossed fields), for which explicit solutions can be obtained. 
For crossed fields, (3.4) becomes A ,  = Aocot,8, and /3 may be eliminated from 

where 

p, = [A2,1MT2D(Y,A;,;ij)+(Y+l)(P-2MT2)(p-A21)21/~ 
= (7 + 1)p2 + [yA;JfT2 - (7 + 1) (MT2 + 2A2,)]p+ (Y + 1) A;(A2,+ 21MT2) 

- [y+ 2 +  ( y -  l)A2,]A;M;2. 

Finally, eliminating p by the substitution p = A?/k gives 

f1 A': +f2 A? +f3 = O ,  

f i  = Y- 1 + ( 2 - Y ) t ,  

(3.5) 

where fi = f i (y ,  so, A!, t)  is as follows: 

f 2  = + (7- 1)A!l (t- 
f 3  = G- 

+ y t 2 -  (Y + 1) 5, 
Pso- (Y+ 1) kl. 

Because A: = p t  = A;cot2/3, equation (3.5) can be viewed as a quadratic for 
any of these variables. Since all are inherently non-negative, and since both 
roots of (3.5) can be shown to be negative iff3 is positive, 

5 2 2SOl(Y+ 1) ( 3 . 5 ~ )  

is always required. Further, when (3.5a) is satisfied, the roots of (3.5) are of 
opposite sign, sincef, is positive for 1 < y < 2. Thus, only the root 

A2, = FE = A! Cot2/3 = [ -f2 + (fi - 4f,f3)*]/2f1 (3.5b) 

can be of physical interest. Therefore, A?, cot2p and j5 are all single-valued func- 
tions of k as given by (3.5a) and (3.5b), and all other variables can be readily 
written down. 

Since both the aligned-fields solution (3.1) and the one-dimensional solution 
(3.3) derived from it are singular for particular cases, solutions in other variables 
must be offered for those cases. When the denominator function D in (3.1) 
vanishes, alterna.tive solutions using /3 as a strength parameter have been pre- 
sented in Bertram (1973). However, when (3.1) is written in the form p ( ~ )  = 0 
in $ 5 ,  this equation is shown to possess three distinct real roots, even when 
D = 0. This indicates that the numerical solution for the two-dimensional case 
is non-singular. 

From figure 1, it is readily seen that there is one case for which both two- 
dimensional non-aligned and one-dimensional representations exist, but the 
aligned-fields representation does not, namely v,, 4 0 while /3 = 0. This is 
de Hoffmann & Teller's (1950) perpendicular shock, for which (see Bazer & 
Ericson 1959, equations 71) 

h = V  
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This solution may also be obtained as the large-[ limit of (3.3a), which gives 
(3.6), and, once h = '1 is substituted into (2.1)-(2.7), equation (3.6~~) follows. 
Because (3.6~) is quadratic and its first and third coefficients are of opposite signs 
for y c 2, there are always two real roots of opposite sign. The negative root 
is excluded as non-physical, so (3.6~~) defines a unique positive i j ,  for which i j  > 1 
when v$, > 1 +so = cX. 

With the inclusion of (3.6), the two-dimensional non-aligned solution from 
(3.1) and (3.4) is complete and non-singular, as is the crossed-fields solution (3.5). 
However, the one-dimensional solution requires a second addition because (3.3) 
is singular for [ = sin2F = 1; that is (3.3) is singular for the normal shock with 
Alfv6nic downstream flow - the switch-on shock (Friedrichs & Kranzer 1958; 
Bazer & Ericson 1959). In  the present notation, with A2, as strength parameter, 
the solution is 

and 

which has real h if and only if 

#5=A2, (3.7) 
(3.7a) h2 = (7 + 1) (A;-  1) (1 - A2,/AT2), 

1 < A2, < At2 = (y + 1 - 2s0)/(y- 1) (so 2 l), 
or AT2 < A2, < 1 (so 6 1); (3.7b) 

obviously, p 2 I only for so < 1. AT2 is the value of A2, for which A2, = MT2, 
that is, when bo+," = u t z .  Finally, then, the complete one-dimensional solution 
consists of (3.3) with (3.6) and (3.7) appended. 

4. Reality, entropy and evolutionary conditions 
Before examining these criteria, it is convenient to introduce the classifications 

fast and slow for shock solutions, according to the definition of Bazer & Ericson 
(1959). A shock is called fast (or slow) if it is super-Alfv6nic (sub-AlfvBnic) down- 
stream; that is, when [ > 1 ([ < I) .  This definition allows clarity in the discussion 
of the relations between the conditions, and has the conventional meaning when 
applied to compressive and evolutionary solutions. The difficulty with the 
definitions employed, for example, by Jeffrey & Taniuti (1964) or Kulikovskii & 
Lyubimov (1962), is that they equate these terms with the evolutionary con- 
dition. Friedrichs & Kranzer's (1958) original definition is not convenient because 
it involves terms from both sides of the shock. 

Now, in order to exclude non-physical branches of the formal solutions given 
in 3 3, the following criteria are applied. Since they are all w-ritten in terms of 
invariants, the results hold without change for all co-ordinate systems connected 
to the aligned system by Galilean transformation. 

(a)  ReuZity. Since each representation of the shock specified some set of values 
upstream and some strength parameter, these variables are automatically real- 
valued. However, they are chosen differently for eachrepresentation, anddifferent 
authors have formulated the same representation differently; true generality 
in identification of 'automatically real' variables is very difficult. In  addition, 
it would be of questionable utility to discuss the very broad classes of formal 
solutions for which some variables are complex-valued, since these can be 

21 FLM 58 
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eliminated very easily by direct inspection of the governing equations; e.g. 
complex ,!? in the crossed-fields case is excluded by (3.5a). 

Accordingly, the approach taken here i s  not completely general, but consists of 
breaking down the reality condition into two parts. The first part is to require 
that the problem be formulated so that y ,  so, B, and /3 are real f r m  the outset; 
in addition, either A: 2 0 or 5 2 0 i s  satisfied from the outset. This list contains those 
variablesmost frequently in the ' automatically real ' category for the formulations 
in the literature, including the one-dimensional and non-aligned two-dimensional 
formulations above. For crossed-fields, real /3 imposes restriction (3.6a) on the 
strength parameter (, and for the aligned-fields case, real /3 requires some rather 
complicated restrictions on p (Bertram 1973). Therefore, the following dis- 
cussion applies to these cases only when the strength parameters have values in 
these restricted regions. When these two conditions have been satisfied, the 
solution will be considered properly formulated. 

After proper formulation of the solution, it is necessary only to write down all 
the remaining variables explicitly (see part 2) to see that the second part of the 
reality condition may be stated in the following two-level form. 

(a,i) All variables, except possibly entropy, are real-valued if and only if 

0 < p < (y+  l)/(y-- 1). 

(a, ii) All variables, including entropy, are real if and only if p > 0. 
( b )  Non-decreasing entropy. Lust's (1955; see Ericson & Bazer (1960) for de- 

tailed proof) form j i  2 1 is used here to guarantee [SJ 2 0. 
( c )  Evolutionary condition. For shock stability, the evolutionary criterion 

(Akhiezer, Lyubarskii & Polovin 1958; Polovin 1961), (c,i) von > cl,.for fast 
(6 > 1) shocks orb,, > vOn 2 c,for slow (6 < 1) shocks upstream and (c ,  11) vn < cr 
for fast shocks or v, < c, for slow shocks downstream will be applied as a necessary 
condition. Apparently it is still not known whether this is a sufficient condition. 
The fast and slow characteristic speeds, cf and c, respectively, are defined by 
(4.2 a) below. 

V7hen a particular solution satisfies all these criteria, it will be labelled proper; 
if any criterion is violated the solution will be labelled improper. Included in the 
proper category are those solutions labelled weakly evolutionary by Jeffrey & 
Taniuti (1964). A proper shock is not necessarily physically realized because of 
the possibility that the evolutionary condition is too weak as a stability criterion. 
In order to provide the simplest possible form of these criteria, the existence of 
the following hierarchy among them is proved. 

( d )  For properly formulated solutions to the de Hoffmann-Teller relations, the 
partial evolutionary condition (c,  i) implies the entropy condition ( b ) ;  the entropy 
condition irnplies the strong reality condition (a,  ii); and the strong reality condition 
implies the weak reality condition (a,  i); none of the converses i s  true. 

The proof is essentially to show that the intervals of 6 in (3.3), over which 
the various conditions are satisfied, are nested. Thus, the theorem is suggested 
and proved from the convenient form of (3.3), which has the following properties. 
First, the function in the denominator of (3.3) is 

d([,cos2/3,y) = (5- 1)2-5"-y/(y- 1)]c0s2/3 2 0 (4.1) 
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and cl = 0 only for the switch-on shocks, This is seen by 
f ;  4 1 and 1 < y < 2gives 

The condition cso < vOn G b,, is satisfied if and only if \ 

t s o  G t G Esoff, 
where gSoff is the smaller root of 

f~(r,s07p,~) (7s- 1)sin2P(t-1)2 
- [y + 2.9,- (y + 2) sin2/3] ( 6 -  1) - cos2/? = 0 

) and where the upper and lower equalities correspond. 
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solving d = 0, which for 

’ (4 .3)  

or, equivalently, 
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Since 2ron = b,, is identical to A2, = 1, and A2, = i5c from (2.11) and the definition 
of [, it follows that 

Thus, except for 5 = 1, A: = 1 where fl vanishes. Because the first and third 
coefficients in fl are always of opposite signs, the roots, designated EOff and 
must always be real and, respectively, less and greater than unity. Also, since 
fl = 2n+ ( y -  1) d, with d always positive, the first root of fl = 0 must always 
occur after n turns negative. That is, csoff > t,, and the second root must satisfy 
i&) < C f o  for the same reason. Thus, we have ta0 < < 1 and I < [A;(3) < f;to 
for all cases. Relation (4.3) follows from the first of these and the knowledge that 
vOn = cs0 only once for E < 1. The subscripts soff and A(3)  are used because these 

values correspond respectively to the switch-off shock and the third solution 
for A ,  = 1, the first A ,  = 1 solution being the Alfvkn shock. 

The condition won 2 cto holds if and only if 6 2 [to.  (4.4) 

This follows easily from the fact that won = cf0 has only one root for 6 > 1, at 
6 = cfo, and the fact that, at  5 = won = b,, < cfo. Therefore, vO,-cfO must 
be positive above tf0, since it is negative below, and has a single zero at  

Now, (4.1) and (4.2) together show that the entropy condition (b)  is identical 
to cso < [ < 1 or t 2 tf0, while (4.3) and (4.4) show the evolutionary condition 
(c, i) t o  be identical to tso < c < < 1 or C; 2 &,,. Thus, (c, i) implies (b), but 
the converse is not true. A corollary is that entropy and evolutionary conditions 
are identical for fast shocks. 

The remainder of theorem ( d )  is proved by similar methods, so only an outline 
need be presented. First, it can be shown that ji = 0 is a cubic in c, with the 
always-real root eRl satisfying 0 < EISl < <80, while the other two roots tE2 and 
tE3, when real, fall in the interval [I, &,I. Then it is shown that p = 0 is a quintic 
in [, with its always-real root lying in [&, [&I. It has no root in ([so, I),  but, for 
5 2 1, may have none or two in [l, tR2] and [&, t,,], respectively. These latter 
results follow from the fact that j3 = 1 only if jj = 1, while p < 0 where p = 0. 
Combination of these statements completes the proof of ( d ) .  

Now, Ericson & Bazer (1960) have proved that (c,i) and (b) together imply 
(c, ii). That is, slow shocks are subslow and fast shocks are subfast downstream 
if they are compressive and super-slow but subAlfv6nic and super-fast upstream, 
respectively. Because ( d )  hasshown that (c ,  i) implies ( b ) ,  thisresultisstrengthened 
to read (c, i) implies (c, ii). A very useful new result follows. 

( e )  The partial evolutionary condition (c,i) applied to a properly formulated 
problem is necessary and suflicient to guarantee that a solution to the shock relations 
(2.1)-(2.9) exists, and is real-valued, compressive and evolutionary. 

Thus, theorem ( e )  reduces the reality, entropy and evolutionary conditions to 
a single criterion, which, however, still contains upstream and downstream 
restrictions, since fast and slow are not simply adjectives, but restrictions on 5 
as used here. This, along with (d) ,  represents a unification and extension of the 
theorems on the relation between entropy and evolutionary conditions presented 
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by Ericson Q Bazer (1960), Taniuti (1962) and Lynn (1971); the latter requires 
a slight rewording as noted in Bertram (1973). Because of its necessary and 
sufficient form, ( e )  is clearly the strongest such theorem which can be proved. 

5. Proper solutions 
Beyond clarification of the roles of conditions (a)-(c) provided by ( e ) ,  we obtain 

from ( e )  the new ability of constructing an algorithm for directly computing 
the proper shock solutions, without first computing and eliminating the im- 
proper solutions. This can greatly simplify analysis of any flow in which magneto- 
gasdynamic shocks are present. 

Consideration of the particular cases is begun with the one-dimensional 
formulation, for which the discussion of $ 4  showed that solution (3.3) is proper 
if and only if 

This is completely equivalent to Bazer & Ericson’s earlier results with h as the 
strength parameter. However, the single-valuedness of (3.3), its use of the 
classifying parameter [ as the strength parameter and its suggestive form all 
render this formulation more convenient. 

In  the aligned-fields formulation, it has been shown that (c,i) is equivalent 
to the following bounds on the strength parameter p (Bertram 1973): 

Lo < C < Ljj or 6 2 Eta. (5.1) 

1 < p < min(A;,MT2) for A ,  > I ,  HI = (A+,)$ > I ,  

max(1, min(jj,,M:2}} 6 p < max{pn,MT2} for so/(l +so) < A? < I,  

where 

in which p ,  is, when real, the largest of the three roots of (3.1) with cos2,8 = 1. 
Since both (5.2) and the equivalent of (5.1) have appeared in the references 

listed, the proper-shocks-only computational ability is not new for these cases. 
However, since no such relations have appeared for the two-dimensional non- 
aligned case (see Lynn 1966; Morioka & Spreiter 1969), those presented below 
are novel. 

Now, when the two-dimensional representation is used, (3.1) is to be solved 
for p with /3 and A ,  obtained from (3.4). From this procedure, three values of p 
may be obtained. However, from (5.2) and the fact that p(P) is a monotone 
function in the ranges of (5 .2) ,  it follows that there is one and only one proper 
solution for each /3 which satisfies (c, i). Thus, constructing the equivalent of (5.1) 
and (5.2) for this case must consist of two parts: first, writing (c,i) in the form 
natural t o  this case, in terms of /? and the characteristic angles w of the steady 
flow; second, laying down a method of solution to the cubic (3.1) which always 
converges to the proper p root. 

Even this first step cannot be carried out analytically, since the magneto- 
acoustic characteristics satisfy a quartic equation for tan (w + written here 
as equation (5.5), which has not been solved in closed form. Only the Alfvh 
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FIGURE 2. Symmetries of the two-dimensional solutions. (a) The transformation @, + - $o 
with /3 + 7r - 1. (b )  The transformation $, + n - $,, with p 3 - p. Shock with $o is aligned ; 
shock with n - @, is anti-aligned. 

characteristic angles can be explicitly written down, as in (5.5~).  This difficulty 
is largely overcome by use of the graphical construction (McCune & Resler 1960; 
Sears 1960) based on the Friedrichs diagram (Friedrichs & Kranzer 1958), which 
allows general conclusions to be drawn by enumerating the possible characteristic 
configurations. 

I n  order to minimize the number of cases considered, the following symmetry 
properties of the solution are exploited. First, for a fixed upstream state (con- 
stant y, so, B,, A ,  and 7,ho), all possible shocks are obtained when p ranges over 
0 6 ~3 6 n. This follows since the substitution ,!3 + ,!3+ n simply rotates all of 
figure 1 by 7c, and therefore represents the same shock. 

< n, 
because the substitution $, +- - $o with j3 +- 77 - /3 gives the same A,,  cos2p and 

Second, all possible cases for fixed y, so, B, and A ,  are covered for 0 < 
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FIQURE 3(a, b) .  For legend see p. 328. 
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Y 

s2 

(4 

FIGURE 3. Upstream evolutionary condition for two-dimensional case. - - -, vOn circle; 
---, characteristic velocity locus ; - - - , Friedrichs diagram (or Alfvdn characteristic) ; 

characteristics. Evolutionary between B'l and P2 ( W F ~ - - ~  < p < wpl)  or between slow 
and Alfvh (aA1 < /I < us1, wS2 < /I < W A ~ ) .  (b)  80 = $, $, = 60°, A, = 0.5. TWO slow 
and two Alfv6n characteristics. Evolutionary between slow and Alfv6n ( O A ~  < /l < us1, 
usz < p < w,,), (c) 8,, = 4, $, = 3.46565", A, = 0.50304. Four slow and two Alfv6n 
characteristics. Evolutionary between slow and Alfv6n (wAl < /3 < osl, wsz < /I < wA2) 
and between 81, 2 and 8 1 ,  3 

- -, shock surface. (a )  6, = +, = 30°, A,  = 1.5. Two fast, two Alfvh and two slow 

< < ws1,3). See figure 4. 

hence q ,  E, etc. values, with only h + - h and [ut] -+ - [[uJ being changed. Thus, 
these two shocks are simply mutual reflexions in the x axis (B, direction) and are 
physically identical (figure 2a).  

Finally, 0 < $,, < in- is sufficient for calculational purposes. To see this, con- 
sider the two shocks related by +o -+ ;TT- $, and p +-p. Then A,  +-- A,, 
[ut] -+ - [u,n and all other variables are unaffected. As may be seen in figure 2 (b ) ,  
these two shocks are related by reflexion of the induction vectors in the x axis, 
while the velocity vectors &re reflected through the y axis. This means that the 
two shocks are physically distinct. However, they are so similar that they need 
not be considered separately. The essential difference is that one has 6, aligned 
( A ,  > 0 )  and the other has to anti-aligned (A,  < 0) with B,. Related symmetries 
about the velocity vector have been discussed by Lynn (1966). 

con- Now, to examine possible characteristic configurations for 0 < eo < 
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veniently , the Friedrichs diagram construction is employed in the following 
slightly modified manner. Rather than plotting - 8, on the diagram and inter- 
preting the line segment from the tip of -8,  to the point of tangency as the 
characteristic surface, C, is plotted and the characteristic angles o are measured 
from the x direction to the tangent extended past the tip of 8,. The resulting 
Characteristics occur in pairs of fast ( F ) ,  slow ( S )  and Alfv6n (A)  characteristics, 
and can have only the combinations shown in figure 3 for 0 6 $, < &r (Bazer & 
Fleishman 1959; Weitzner 1961; Lynn 1962). The member of the pair whose 
tangent point is farthest to the right on the Friedrichs diagram is distinguished 
by a 1, making PI, S1 and AI.  The remaining member is denoted by F2, 82 
or A2. When there are four slow characteristics as in figure 3(c), three of them 
come from the same portion of the characteristic locus, and are further dis- 
tinguished by adding a subscript 1, 2 or 3 so that 0 6 wsl,l < wsl,z < oss3 6 n. 
Note that this arrangement always has F2, 5 2  and A2 above Ow, while P I ,  A1  
and at  least one Sl lie below 0,, where 0, denotes 8, extended, that is, the stream- 
line characteristic. 

Once the characteristics have been obtained, a shock can be indicated by 
drawing the shock plane through the tip of 8, a t  an angle /3 to B,. The relation 
of v,, to the characteristic velocity then can be simply determined by drawing 
the circle with 8, as diameter. This is possible since a ray OP from the origin to 
the point P on the circle where the shock intersects it is necessarily normal to 
the shock surface, so lOPl = v,, (see figure 3a). It follows that von 2 c, is true 
whenever the point P is inside or outside the characteristic velocity locus, so 
the upstream part of (c,i) can be read directly off the oo, circle and the charac- 
teristic velocity locus. In  fact, we can dispense with the Priedrichs diagram since 
the intersections of the v,, circle with the characteristic velocity locus (points 0, 
A ,  B, C,  D and E going clockwise around the circle in figure 3a)  have v,, = c,, 
and therefore provide an alternative method of constructing characteristics. 
However, the Friedrichs diagram construction will be used both here and in 
part 2 because it is familiar and somewhat easier to work with. 

It follows from the construction described above that c,, < won < b,, holds for 
all /3 values for which the corresponding segment of the v,, circle falls between 
the slow and Alfvbn characteristic velocity loci, such as arcs AB and EF in 
figure 3 (a); vOn cfo for those ,13 for which the won circle is outside the fast charac- 
teristic velocity locus, such as CD in figure 3 (a). While it is easy to see in figure 
3 ( b )  that only the regions between S1 and A l ,  and between 5 2  and A 2  satisfy 
the evolutionary condition upstream, it is necessary to consider the slow locus 
in detail to confirm the conclusion stated for figure 3 (c). Thus, figure 4 shows a slow 
characteristic velocity locus with its x-lengthly-length ratio exaggerated in order 
to enhance clarity. Since the slow characteristic velocity locus is always elongated 
in the x direction, the figure is qualitatively correct for all cases. The caption 
statement is evident for the 8, shown, and the reader may confirm that it is true 
also when the tip of 8, lies outside the characteristic velocity locus, but still 
within the Friedrichs diagram triangle, such as a t  P in figure 4. The condition 
vO, < b,, must hold for every point on the v,, circle between 0 and the S 1 , l  
intersection with the slow characteristic velocity locus, so that this condition 
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SI, 1 

/ 

FIGURE 4. Proof that voa 2 c , ~  always requires 0 < /3 < wsl,l or ws1,2 < p < w ~ ~ , ~  t o  
be true when there are four slow characteristics. - - -, v,,, circle; -, slow characteristic 
velocity locus ; - - - (slow) Friedrichs diagram. 

excludes only a portion between 0 and X l , l ,  and the conclusion of figure 3 (c) 
is proved. 

All the above results may be summarized by the following 
simple statement. Whether there are four or six characteristics, 
the upstream evolutionary condition cso 6 vOn < b,, or van 3 ojo 
is satisjied between every second pair, starting with the S2-A2 pair 
for 0 < $,, 6 &T. 

The geometric form of this is shown in figure 5. It might be remarked that the 
convexity of the vOn circle and the characteristic velocity loci are sufficient to 
prove statement (5.3) directly, since portions of the von circle inside and outside 
the velocity loci must necessarily alternate between intersections. 

Now it remains only to compute the proper 7 from (3. l), which may be written 

1 (5.3) 

as 

where 

c2= y- M T 2  cos2p- 2(A? - 1) - ( M y  - l), 
Y+1 

A; MF2 
Y+l 

c, = (A?-  1)2+2(A?- 1) ( M y -  1)- [1+ (y -  1) (A?- l)] -cos2p 
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S1 

(a) 
FIGURE 5 .  Hatched regions violate evolutionary condition (c, i) ; unhatched regions always 
have single proper shock at  each /?. (a) Six real characteristics. ( b )  Four real Characteristics. 
0 < @o < 4.. 

Since this is to be solved numerically, we seek only the analytical properties of 
(5.4) which guarantee efficient numerical solution. Because of its fast convergence 
and simplicity, the Newton-Raphson method is used here, so we need only 
supply a starting value rS which is close enough to the actual root 7, that is, 
such that there is neither a critical nor inflexion point of P(7) between 7S and 7 
(see Henrici 1964). For the fast-shock case, the Germain-Shercliff analysis in 
figure 6 indicates that all three roots of (5.4) must be compressive [note that (5.3) 
has already selected point 1 in figure 6 as the upstream state], and that the 
proper root is the smallest of the three. It follows that P(q), being cubic, must 
have both its critical points and its only inflexion point above the proper 7, 
so that qS = 0 guarantees convergence to  7. For the slow-shock case, the evolu- 
tionary condition (5.6) has selected point 3 as the upstream state, so that (5.4) 
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1lP 

FIGURE 6. Rayleigh line (after Shercliff). Numbered points satisfy 
shock relations with entropy increasing 1 to 4. 

can have only one positive root, and that is the proper 7. Thus, taking rs = 2 / (  y - 1) 
guarantees convergence to 7 from above, since the critical points and inflexion 
point of P(7) must lie to the left of the proper 7, which must be smaller than ys 
according to the reality condition (a, i). 

In summary, then, the entire algorithm, equivalent to equations (5.1) and 
( 5 . 2 ) ,  for computing only proper two-dimensional shocks,!consists of the following. 

Magneto-acoustic characteristic angles are obtained from the roots of 

[(A: - 1) (Ni - 1)  sec2 $o - tan2 $0] r4 - 2 tan $073 - (At + - 1) 

x see2 +or2 - 2 tan $,,r + tan2 $o = 0, (5.5) 

where T = tan (o + $o) and M i  = A$/$,. Equation (5 .5 )  is a slightly rearranged 
version of Lynn’s (1966) equation 21. Alfvkn characteristic angles are found from 

tanwAi = Aosin$o/( - A o ~ ~ ~ $ o +  l), (5.5a) 

with A 1 and A 2  corresponding, respectively, to the plus and minus signs in (5.5a). 
Proper p ranges may be identified once (5.5) has been solved by noting that 

the S2 characteristic is always the first above Ow, so that its r root is always the 
smallest positive root of (5.5). It follows that (5.3) can be given the general 
analytical form 

w1 6 p  < we, w3 6 p < w4, w5 < ,8 < 04 (when w5 and W g  are real), (5.6) 

where w1 = os2 = smallest positive r-root of (5.5) and wi 6 wi+l are charac- 
teristic angles, both Alfven and magneto-acoustic, ordered from ws2 t o  n - ws2 
in ascending order. Thus, the second step in the algorithm is to test whether the 
p value prescribed falls into the ranges of (5.6). If it  does not, there are no proper 
shock solutions and calculation stops. 

When (5.6) has been satisfied, the A ,  value is obtained from (3.4), and M:2 
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is computed from A,, so that all coefficients in (5.4) are determined. Then (5.4) 
can be solved by a Newton-Raphson method, with 

1 - sgn (A:- 1) 

Y-1 7 s  = (5.7) 

The complete two-dimensional algorithm, then, consists of solving (5.4) with 
a starting value of (5.7), if test (5.6), with values from ( 5 4 ,  is passed. 

The crossed-fields solution, equation (3 .5b) ,  when subject to equation ( 3 . 5 ~ )  
is properly formulated, and the proper ij value will thus be given by (3 .5b)  when 
Eis chosen so that /3 falls in the ranges of (5.6), according to theorem ( e ) .  Thus, we 
must have 

where Ef0 and (so are the roots of the crossed-fields characteristic equation, 
since p = 1 on the characteristics, implying that 5 = A t  cot2 0). Thus they satisfy 

( A $ - l - s o ) [ ~ - ( ( A $ + s o A ~ - S 0 ) ~ + S o A $  = 0, ( 5 . 8 ~ )  

which always has a positive real root Eso < 1, and has a positive root tf0 > 1. when- 
ever A: > 1 +so. The value ,$s,,rj is found most easily by setting A2, = 1 in (3.5) 
and factorizing (- 1 to obtain 

(y + 1)  A;([ - 1 ) 2 +  [y + 28, + 2(s0- 1) A$] (5 - 1) - 1 = 0, (5 .8b )  

the smaller root of which is gsofj and the larger is 
I n  closing, we note that necessary and sufficient conditions for each of the 

limit and singular solutions to be proper have been given in the discussion of 
these cases in 9 3, so that the above rules cover all cases. 

6. Classification and discussion of solutions 
Construction of a general classification scheme is motivated by the desire to 

gain an overall understanding of the possible shock properties. The task is 
begun here by distinguishing between an individual shock solution, for which 
every parameter has a specific numerical value, and a shock polar, the set of 
individual solutions obtained by varying the strength parameter over all possible 
values, while holding the upstream parameters fixed. A class of individual 
solutions can then be defined by some shared property, while properties possessed 
by a shock polar should be used to classify polars. 

There have been essentially two types of classification schemes based on 
individual shock properties. The first is the set of special-case classes, such as 
normal shocks (/3 = QT) and perpendicular shocks (de Hoffmann & Teller 1950), 
etc. The second is the set of general classes of fast, slow and intermediate intro- 
duced by Friedrichs & Kranzer (1958), but made exhaustive by the definitions 
of Bazer & Ericson (1959), who noted that inclusion of the limit shocks in the 
class (e.g. perpendicular shocks classed as fast, etc.) made it possible to include 
every shock in one of the three classes. These individual shock classes are sum- 
marized in table 1, from which improper solutions are excluded on the grounds 
that it serves no purpose to classify them, since the rules presented in 3 5 allow 
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All proper shock solutions 
I \ 

Fast (g > 1) Intermediate (6 = 1) Slow ( E  < 1) 
7- 7, r A 

\ 

Perpendicular sliocks Simple fast Switch-on Alfv6n Switch-off Simple slow 
(5 -+ 0 0 3  P + 0) (finite E )  (/3 = &n) (A, = 1)  ( A ,  = 1) (A, < 1) 

TABLE 1. Classification of individual shock solutions. In addition, there are many special- 
case classes ; e.g., normal shocks, zero-strength shocks, etc. 

us to avoid them. Also, since the intermediate class contains only two subclasses, 
it is redundant, but is retained for completeness. 

A detailed study of shock polars and their classification is contained in part 2, 
but we make the following observations, which cast some light on the individual 
solution classification. A shock polar is defined by holding some set of upstream 
parameters constant and varying a strength parameter. Therefore, there is a one- 
to-one correspondence between general polar types, distinguished by the set of 
parameters held constant, and the representations discussed in Q 3. Within the 
one-dimensional shock polar type, some individual polars will have the parameter 
h as a monotone function of the strength parameter; others will have h reaching 
a maximum and then decreasing, so that each h within a certain range will 
correspond to two shocks of the polar. These polars were labelled type 1 shock 
and type 2 shock, respectively by Bazer & Ericson (1959). Clearly, since the 
de&xing property is a property of the whole polar instead of an individual solu- 
tion, it  is more logical to attach the class adjective to the polar; thus, type 1 polar, 
etc. A second example of the same ambiguity is the terminology ‘incomplete 
fast gas shock completed by the incomplete switch-on shock’, which is applied 
to the one-dimensional unsteady polar with ,8 = in-, that is, the normal-shock 
polar which is made up of gas shock and switch-on shock branches (Bazer & 
Ericson 1959). It is the above reasoning which leads to the proposal that classifica- 
tion of individual shock solutions be considered complete with the scheme of 
table 1, plus the special-case classes, and that a second scheme be derived from 
the properties of, and applied to, the polars as is done in part 2. 

Now, as stated in the introduction, this study has had two major goals: in- 
creasing insight into the possible properties of magnetogasdynamic shocks, and 
arranging formal solutions for efficient numerical calculations in applications. 
The first goal has so far been approached only to the most preliminary extent. 
In  fact, it can only be fully achieved by considering the shock polars. Since each 
of these contains all the possible downstream states which can be reached from 
a single upstream state, as viewed from a particular co-ordinate system, mastery 
of the properties of each polar represents an understanding of a whole continuum 
of individual shock solutions. Accordingly, part 2 of this study pursues the 
construction and classification of the polars, for which purpose the forms of the 
solutions in 5 3 were mainly developed. 

The second goal has been achieved to an extent, perhaps greater than is 
obvious. First, the rules of $ 5 ,  applied directly to the strength parameter in 
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each solution, render all these solutions single-valued functions of the strength 
parameter. This implies that any application in which the strength parameter is 
dictated as a boundary value is trivial, while a simple iteration can be set up if 
the dictated boundary value is not the strength parameter. To consider a specific 
application, both the studies of Lynn (1966) and of Morioka & Spreiter (1969) 
were motivated by a wish to employ the deflexion angle of the velocity vector as 
a strength parameter in a non-aligned two-dimensional flow, because the mag- 
netoaerodynamic boundary-value problem, in which the body shape dictates the 
flow direction, is of central interest. The result of Lynn’s study was an equation 
cubic in the tangent of the deflexion angle, and of degree eight in the tangent of 
the shock angle. Clearly, the simpler procedure is to solve it for the deflexion angle 
with the shock angle as strength parameter. In the Morioka & Spreiter formula,- 
tion, a combination of shock and deflexion angle is the unknown, which satisfies 
a cubic equation with coefficients given as functions of shock angle as strength 
parameter. The only advantage possessed by either form, then, over the algorithm 
presented here is the elimination of a single computational step, that of computing 
the deflexion angle after solving (5.4) for j3. In all three forms, it is still necessary 
to iterate on ,6 to obtain the prescribed deflexion angle. The price paid for 
elimination of the single step is the necessity of computing all three roots of the 
cubic, and then eliminating two of them by some rule derived from reality, 
entropy and evolutionary conditions. Of course, application of (5.6) to  Lynn’s 
or Morioka & Spreiter’s equations, along with the development of an algorithm 
equivalent to (5.7) to guarantee convergence to the proper root, could eliminate 
even the single extra step. The conclusion to be drawn from this is that the single- 
valuedness of the present solution is a computational advantage great enough to 
make this solution generally useful, no matter what boundary data may be 
supplied by the problem to which it is applied. 

This project was supported by the Engineering Research Institute, Iowa State 
University, Ames, Iowa. 
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